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Static homogeneous formations in general relativity theory are considered. It is shown 
that two types of formations exhaust the possible collection of such formations. The data 
obtained are to present the planckeon hypothesis of elementary particle structure. 

The canonical form of general relativity theory, also known as canonical gravidynar 
mics, variants of which have recently been developed by several authors [l - 31, permits 
correct formulation of the general covariant definition of the intrinsic energy of an iso- 

lated object, provided the distortion of space-time for which it is responsible, is local, 
This condition is fulfilled with a high degree of accuracy by elementary particles. It 
turns out that the intrinsic energy of elementary particles in a gravitational field is finite, 
and that the domain of definition of an elementary particle must contain a gravitation- 
ally self-compensated domain of dimensions L _ IO-* cm (or,,from dimensionality con- 
siderations, 10-3:’ cm). The energy included in this domain is on the order of 10zu eV 
(10+ g). The gravitational self-compensation condition implies that the dimensions I, 
of this domain must equal its gravitational radius rfi 
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On the other hand, we know the Planckian length L* N 10-83 cm and the characteristic 
Planckian mass m* - 1O+g. Blokhintsev has pointed out that a mass m* - IV g loca- 
lized in L* would have a gravitational radius rg = L*. Staniukovich has further noted 
that for such a mass rb’ = J, where a is the radius of inner curvature. From this we see 
that if such an object did, in fact, exist, its characteristics would satisfy those of an object 
of the universe class, rg = L* = a. Sta~~ovich [4 and 53 has put forward the hy~th~~ 
that such objects (planckeons) do exist in our universe as relic particles left over from 
the instant of birth of the universe itself. 

Markov [6 and 71 has suggested that such objects may exist as component parts of 

elementary particles, i.e. as a species of quarks of infinitely large mass (maximons), 
Three (or more) maximons are strongly bound to form a single system (an elementary 
particle) with a mass defect equal to within 10’20 to the characteristic rest energy of a 
maximon. The uncompensated rest energy is the observed energy of the elementary 

particle. 
There exists another approach to the interpretation of planckeons with L* andm*:In 

fact, planckeons are objects of the universe class. 
A planckeon. being immersed in external space-time, would have no way of declaring 

its existence : to an outside observer the mass of a planckeon with L* = rg I: a would 
be identically equal to zero. 

However, the condition L* = rfi = a is violated because of fluctuations of the fields 
in the ambient space, and the planckeon passes into a nonideally closed state. 

Part of the matter constituting a planckeon exceeds the limits of the *gravitational 

radius and becomes explicitly observable, i.e. direct interaction between the excess 
matter and objects in external space becomes possible. According to the theory of Sta- 
niukovich, the excess mass of a planckeon is approximately equal to the nucleon mass 

in the first approximadon of perturbation theory ; in the third approximation it is equal 
to the graviton mass (the Zel’dovich-Novlkov semiclosed worlds are an illustration of 

perturbed planckeons). 
Proceeding from this model, we can represent an elementary particle as matter distri- 

buted in the localization domain of the particle which is held in by the gravitational 
field of the planckeon core situated deep in the center of the particle. The experiment- 

ally determined density distribution in adrons points to the possibility of a definite class 
of motions of the planckeon core. The virtual character of the densities does not contra- 

dict the above hypothesis. 
As a first approximation we can assume that pfanckeons are static in the closed state 

and consider their possible collection. 

1, Let us consider the interior problem for an ideal fIufd which conforms to the energy- 
momentum tensor TIH = (p + e) ud’ i- P6,’ (1.1) 
within the framework of general relativity theory, 

J-&R - ‘/a 6t”fl = xT,~ (1.2) 
We shall seek the resulting space-time metric in the form 

- &$a =2: - c2dt2 + eh(r.0 &a + ev(r’l (do2 f sina Q&p2) (1.3) 

By a standard procedure we find from field equations (1.2) that ~A(‘*r)hev(*f) , p(r,l) 
and e(rit) satisfy the system 



stack fatian in mc -al t?aWy obrelativilty and p1aildteom 821 

Let us consider homogeneous formations. This enables us to write the single equation 
of state P =p(d Wo 

The condition of co~vement of the reference frame and moving matter in consider- 

ing Eqs. 
0 3 

or, in expanded form 1, 

p’ + e’u’ / ca 
P+e 

+ (P’ + e’) u e,,r A 

(P+e)c + 
$g + +- (VW A’f + y) + 

+ & e’h x 1 + ( q-t- ($ew) = 0 (1.10) 

(1.11) 

implies the necessity of a zero pressure gradient p’ = 0. 
In fact, the time lines in the synchronously comoving reference frame are geodesic 

(this Is easy to verify directly). However, not only the pulverized matter moves along 
the geodesic lines ; the same applies to all matter for which p’ = 9, since the action 

of a force is always directional and must be expressed by a pressure gradient, and not 
by pressure itself. In other words, only matter for which the condition p' = 0 does not 
hold will “depart” from the geodesic lines. The pressure itself plays the role of a homo- 

geneous and gotropic background imposed on the matter (*). 

Recalling relation (1.8) and the condition p’=O, we transform system (1.4) -(l. 7) 
into 

4e i&(r) - x, (r) = Rx’ (r)lrv (r) - 2A”, (I”), yJZ(t) - %ie-=(~~ - xe 

A rT(0 - 3/( zy) - I”’ (t) = xp (1.12) 
Interval (1.3) then becomes 

--as = - csdts f- eT(r) [err drs + en,@) dQs] (1.13) 
Complemented by equation of state (1.Q Eqs. (1.12) completely define the dynamics 

of the Friedmann universe. 

Eq. (1.12) contains as special cases the equations for determining the form of the 
space part of the interval which were used by Einstein and McVittie. In fact, let us set 

in (1.13). 

* ) 1n the most recent edition of FIELD THEORY by Landau and Lifshits (5th edition, 
1967). ~ifshits makes the imprecise statement that a synchronously comoving reference 
frame exists only if p = 0 (& 377) and later (p. 389) cites Tolmank solution as the only 
possibility of existence of a synchronously comoving reference frame. 
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In this special case (1.12) becomes the familiar Eq, 

it?Rh (r) 

whose solution yields i,+ 
(1.14) 

With allowance for (1.15), we can rewrite interval tl. 13) as 

(1.15) 

(1.16) 

This is the standard way of writing the Friedmann interval. Let us find another expres- 
sion for interval (1.16). We set exp Xh (r) = r2. From the expression 

exp Ii, (I’) = 
RS” (7) -- 

4[tI--e -ir,b) 
which follows from Eq, (1.12), we obtain I 

oxp It,, (I’) z-z 
1 1 

l  + a‘lrz == 1 f r*/cc0’ 

With allowance for (1.17) we can rewrite interval (1.13) as 

(1.17) 

which in turn can be rewritten as 
(/.$*a I-. t/r: -- - c”&” -I_ i-=--i _/_ )‘:! &” -- _‘ C/S”Cl,,~;‘,1’ 

It is important to note here the existence of an initial radius of curvature (lo > (1 

(a = a,, for t =: 0). Eqs. (1.12) complemented by the equation of state p ==I) (e) have 
an infinite number of solutions of which we choose the subclass of solutions with & = 
= const . This is a necessary, but not sufficient, condition for constant-curvature spaces. 

For static spaces we also have the condition 

P = consl, E =z const (1.10) 

Let us stipulate that R = X(E - 3~) = const in (J., 12) and obtain the general 
solution er(0 zz ii, oxp (f$X! Clr) f- rls t.?Sp (- r/‘,3Ct) - filt / JZ! (I .20) 

Imposing additional condition (I. 19) on this solution, we obtain two spaces, namely 
‘2 

- i(.$ “zz - &j/’ _{ _ .._A&__ 
1 - )‘J / I&,:! 

.j- $ {,/(I2 .+ sills 0 fi(i~‘) (221) 

with the equation of state ZIP -I- E = 0,and 

- cfsa = - csd12 + esp (vxficl) (rlrs + PdQe Jr sinzO(l(p2~ (1 .ZZ) 

with the equation of state p -j- e = 0. Conversion from metric (1.22) to the form 

and back is sufticiently sirhple, 
The uniqueness of static worIds (1.21) and (1.32) can be demonstrated by considering 

the equation of hydrostatic equilibrium in general relativity theory, 

(1.33) 

LetE = F,) = consl, Eq. (1.23) then yields 

xra(p -+ F) (:Q -{- F) = - 2r (rip/&) (1 - xf%) 

This implies that when p = consl, we have either 3p + E = 0 or p “; & = 0. 
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A difficulty arises with equations of state in which either I’ or F. must be negative. 
This difficulty has a history of its own. It was first encountered by Einstein. To avoid 
negative quantities, he introduced the additional term A in the initial equations of gene- 

ral relativity theory. 
Negative pressure has also been used by other authors, who introduced it in arbitrary 

fashion in order to eliminate singularities in dynamic models of the universe, An alter- 
native procedure is to introduce the components of the true tensor of the gravitational 

field, whose energy density is negative, into the energy-momentum tensor of an ideal 
fluid. 

Introduction of such a tensor has nothing to do with the energy-momentum pseudoten- 
sor of the gravitational field obtained by the Noether theorem, 

The gravitational field pseudotensor essentially describes garvitational waves and the 

possibility of multipolar radiation of gravitational waves. The true gravitational field 
tensor is a four-function of the curvature, and its trace is “indestructible” under all coor- 
dinate and reference frame transformations. In this case it is always possible to compute 
the gravitational field pressure in such a way that the pressure and density of matter are 
positive. Weyl and Eddington, who suggested varying other Lagrangians in addition to the 

ordinary Einstein gravitational field Lagrangian R / 2x, were apparently right, 

Without imposition of the additional conditions 0 = cortst and E = const , gene- 
ral solution (1.20) defines models of nonstatic worIds. This can be shown simply enough 

by verifying directly the impossibility of reducing any particular cases of an interval 
with the metric determined from (1.20) for any values of the integration constants /i r, 
A,, A to time-independent form. 

The resulting nonstatic universes expands in such a way that the average curvatute in 
all two-dimensional directions remains constant at each point. This is accompanied by 
smooth transition of the equation of state from physical to “nonphysical” form. For 
example, matter in a universe of the form 

- da2 = - cadt2 + sll jQJi ct(tlr2 -/- r2tW -I- siilzOdq,z) 

has the equation of state Xi, - 4: s 0 (i.e. the equation of state of an ultrarelativistic 
gas) at the initial instant. With the passage of time the equation of state gradually 
becomes p -j- E = 0. 

2. We can show that universes (1.21) and (1.23) exhaust the collection of static spa- 
ces of constant curvature. To do this we consider homogeneous and isotropic formation 
satisfying the cosmological principle, i. e, having the metric 

_ & = _ ,$?&a i_ $-fli da2 (2.1) 

where du2 is the metric of a three-dimensional space hypersurface ; the metric coeffi- 
cients in du2 do not depend on the time coordinate. 

Among the spaces of class (2.1) we seek the subclass of spaces of constant curvature 
for which 

or, in expanded form 

(2.21 
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The Riemann-Cbristoffel tensor Rfklm has 21 essential components. The subscripts 
of these components run through the follow~g values: 

1212 1223 1324 1423 2323 2424 1313 
1213 1314 1334 1424 2324 2434 1314 
1214 1223 1414 1434 2334 3434 1323 

The components with more than two distinct subscripts yield identical zero in the 

right side of Eq. (2.2). There remain six essential components for which the right side 
fs not identicalZy equal to zero, namely 

12f2 1313 1414 2323 2424 3434 (2.3) 

The six components of (2.3) expressed in terms of the metric coefficients of the basic 
quadratic form (2.1) yield a system of six equations whose general solutions are spaces 

of constant curvature. 
Let us take metric (2.1) in the form (1.18). Then 

p9 
611= - 1 + :lra * 622 = 

eW ~2 t g33 = eT(Q rz Sin2 8 (2.4) 

and the Christoffel symbols are 

l?;s= --& I’:, = $, I’;, = $-, I’“,,= + (2.5) 

Substituted (2.4) and (2.5) @to (2.2)* we obtain an equation for the subscripts 1212, 

- 911 (r’22 1’L) - 4,,05,rq,) = ,Ir’q,,qss or T’ z(d) - 4k=(t) = 4K 
The equation for the subscripts 1313 is of the form (2.6) 

After some minor transformations we again arrive at Eq. (2.6). The equation for indi- 
ces 2323 yields a similar Eq. (2.6). This is to be expected, since the space part is a sub- 

space of constant curvature, and all of the space coordinates are equivalent. 

After simple transformations, Eq. (2.6) for the components with the subscripts 1414, 
2424,3434 yields Eq. T’z(t) -f- 2T” (t) = 4K (2.71 

For determining the function er6) we have the two equations (2.6) and (2.7). whose 

solution in the case K = 0 is eT(t) =A(ct + Cl)2 

i.e. the special case of an expanding Euclidean space. Setting A = 0 in (2.6). we 
obtain the space-time metric for the de Sitter world. Using the substitution 

l/Y = 4 de-=(‘, 
we can reduce Eq. (2.6) to the form 

Y ‘2=4Ky2+y 
whose only solution is 

eT(O E 
1 

(Ao I Ko) ~11~ V-% (cl + CI), K = K, > 0 

(/&l/&fcos~ ~R&+cr), K=-A-0< 0 
(2.8) 

Solutions (2.8) resemble the expressions for the metrics of ordinary surfaces of con- 
stant curvature written out to within bending in a geodesic coordinate system. It is easy 
to verify that solution (2.8) also satisfies Eq, (2.7). We therefore have two homogeneous 
and isotropic spaces of constant curvature, 
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-dss = - c’dt’ + $ch’ JfK(ct + ~1) ( 1 _dz:,a,z i- rldS2') (2.9) 

-dsa = - c2dt' + 2 CO2 I/iQct + Cl) ( dr2 
1 + rz/a,B 

+ r2dP2) (2.10) 

The universes defined by metrics (2.9) and (2.10) satisfy the cosmological principle, 

and thus conform to relations (1.12). Substituting (2.8) into (1.12). we obtain the equa- 
tion of state p + e = 0. 

The metric of the required spaces is readily reducible to time-independent form. 

Here (2.9) becomes_ &s ~ -ccldta (1 - f) + f1 _$;a,, _t r*d!P, (2.11) 
and (2.10) becomes 

- ds’ = - crr11a (1 + 2) -I-- &;;? + /+I!!~ 

The above notation is interesting in that the space part is written in the standard way, 
as for the Friedmann universes, so that several new forms. including 

can be written automatically for the de Sitter world. 
Thus, there can be only two types of universes identifiable with static planckeons. 

Planckeons are, in fact, nonstatic, and the next approximation to be considered is the 

approximation of oscillating objects of the universe type. 
This approximation already offers real hope of finding the spectrum of levels of the 

planckeon core of elementary particles, which is related to the spectra of elementary 
particles. 

The hypothesis of planckeon structure of elementary particles has several extremely 
fruitful implications whose exact proof is a subject in quantum gravidynamics. One such 
implication is the conclusion concerning the latent energy of elementary particles, which 
exceeds the observed rest mass by twenty orders of magnitude. 
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